The Unified Method in Polygonal Domains via the Explicit Fourier Transform of Legendre Polynomials

نویسندگان

  • A S Fokas
  • S A Smitheman
چکیده

The recent numerical implementation by Fornberg and collaborators of the so-called unified method to linear elliptic PDEs in polygonal domains involves the computation of the finite Fourier transform of the Legendre polynomials. A variation of this approach, introduced by two of the authors, also involves the same computation. Here, instead of expressing the finite Fourier transform of the Legendre polynomials in terms of Bessel functions J n+ 1 2 , we employ an explicit formula in terms of exponentials. We illustrate the usefulness of this formula, which is considerably cheaper to use, by implementing the unified method to the modified Helmholtz equation in the interior of a square. For completeness we present an explicit formula for the finite Fourier transform of all Jacobi polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Finite Fourier Transform of Classical Polynomials

The finite Fourier transform of a family of orthogonal polynomials is the usual transform of these polynomials extended by 0 outside their natural domain of orthogonality. Explicit expressions are given for the Legendre, Jacobi, Gegenbauer and Chebyshev families. 2010 Mathematics subject classification: primary 33C45; secondary 44A38, 33C47, 33C10, 42C10.

متن کامل

Formulas for the Fourier Series of Orthogonal Polynomials in Terms of Special Functions

—An explicit formula for the Fourier coef cients of the Legendre polynomials can be found in the Bateman Manuscript Project. However, formulas for more general classes of orthogonal polynomials do not appear to have been worked out. Here we derive explicit formulas for the Fourier series of Gegenbauer, Jacobi, Laguerre and Hermite polynomials. The methods described here apply in principle to an...

متن کامل

Numerical Calculation of Fractional Derivatives for the Sinc Functions via Legendre Polynomials

‎This paper provides the fractional derivatives of‎ ‎the Caputo type for the sinc functions‎. ‎It allows to use efficient‎ ‎numerical method for solving fractional differential equations‎. ‎At‎ ‎first‎, ‎some properties of the sinc functions and Legendre‎ ‎polynomials required for our subsequent development are given‎. ‎Then‎ ‎we use the Legendre polynomials to approximate the fractional‎ ‎deri...

متن کامل

Numerical Solution of Interval Volterra-Fredholm-Hammerstein Integral Equations via Interval Legendre Wavelets ‎Method‎

In this paper, interval Legendre wavelet method is investigated to approximated the solution of the interval Volterra-Fredholm-Hammerstein integral equation. The shifted interval Legendre polynomials are introduced and based on interval Legendre wavelet method is defined. The existence and uniqueness theorem for the interval Volterra-Fredholm-Hammerstein integral equations is proved. Some examp...

متن کامل

Numerical solution of nonlinear Hammerstein integral equations by using Legendre-Bernstein basis

In this study a numerical method is developed to solve the Hammerstein integral equations. To this end the kernel has been approximated using the leastsquares approximation schemes based on Legender-Bernstein basis. The Legender polynomials are orthogonal and these properties improve the accuracy of the approximations. Also the nonlinear unknown function has been approximated by using the Berns...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013